Search results for "Aspartate Ammonia-Lyase"

showing 2 items of 2 documents

Taspase1: a 'misunderstood' protease with translational cancer relevance

2015

Proteolysis is not only a critical requirement for life, but the executing enzymes also play important roles in numerous pathological conditions, including cancer. Therefore, targeting proteases is clearly relevant for improving cancer patient care. However, to effectively control proteases, a profound knowledge of their mechanistic function as well as their regulation and downstream signalling in health and disease is required. The highly conserved protease Threonine Aspartase1 (Taspase1) is overexpressed in numerous liquid and solid malignancies and was characterized as a 'non-oncogene addiction' protease. Although Taspase1 was shown to cleave various regulatory proteins in humans as well…

Threonine0301 basic medicineCancer ResearchProteasesmedicine.medical_treatmentProteolysisComputational biologyDiseaseBiologyBioinformaticsmedicine.disease_causeAspartate Ammonia-LyaseGene Expression Regulation EnzymologicTranslational Research Biomedical03 medical and health sciencesNeoplasmsEndopeptidasesGeneticsmedicineHumansEnzyme InhibitorsMolecular BiologyProteaseMolecular Structuremedicine.diagnostic_testCancermedicine.diseaseGene Expression Regulation Neoplastic030104 developmental biologyProteasomeCarcinogenesisBiologieFunction (biology)Oncogene
researchProduct

L‐Aspartate as a high‐quality nitrogen source in Escherichia coli : Regulation of L‐aspartase by the nitrogen regulatory system and interaction of L‐…

2020

Escherichia coli uses the C4-dicarboxylate transporter DcuA for L-aspartate/fumarate antiport, which results in the exploitation of L-aspartate for fumarate respiration under anaerobic conditions and for nitrogen assimilation under aerobic and anaerobic conditions. L-Aspartate represents a high-quality nitrogen source for assimilation. Nitrogen assimilation from L-aspartate required DcuA, and aspartase AspA to release ammonia. Ammonia is able to provide by established pathways the complete set of intracellular precursors (ammonia, L-aspartate, L-glutamate, and L-glutamine) for synthesizing amino acids, nucleotides, and amino sugars. AspA was regulated by a central regulator of nitrogen meta…

endocrine system diseasesNitrogenGlutaminePII Nitrogen Regulatory ProteinsNitrogen assimilationDeaminationGlutamic AcidBiologymedicine.disease_causeAspartate Ammonia-LyaseMicrobiology03 medical and health sciencesBacterial ProteinsAmmoniaEscherichia colimedicineProtein Interaction Domains and MotifsNucleotideMolecular BiologyEscherichia coliNitrogen cycle030304 developmental biologyDicarboxylic Acid Transporterschemistry.chemical_classificationAspartic Acid0303 health sciences030306 microbiologyEscherichia coli ProteinsAssimilation (biology)Gene Expression Regulation BacterialAmino acidEnzymechemistryBiochemistryMutationKetoglutaric AcidsMetabolic Networks and PathwaysMolecular Microbiology
researchProduct